GPU-Based Spherical Light Field Rendering with Per-Fragment Depth Correction
نویسندگان
چکیده
Image-based rendering techniques are a powerful alternative to traditional polygon-based computer graphics. This paper presents a novel light field rendering technique which performs per-pixel depth correction of rays for high-quality reconstruction. Our technique stores combined RGB and depth values in a parabolic 2D texture for every light field sample acquired at discrete positions on a uniform spherical setup. Image synthesis is implemented on the GPU as a fragment program which extracts the correct image information from adjacent cameras for each fragment by applying per-pixel depth correction of rays. We show that the presented image-based rendering technique provides a significant improvement compared to previous approaches. We explain two different rendering implementations which make use of a uniform parametrisation to minimise disparity problems and ensure full six degrees of freedom for virtual view synthesis. While one rendering algorithm implements an iterative refinement approach for rendering light fields with per pixel depth correction, the other approach employs a raycaster, which provides superior rendering quality at moderate frame rates. GPU based per-fragment depth correction of rays, used in both implementations, helps reducing ghosting artifacts to a non-noticeable amount and provides a rendering technique that performs without exhaustive pre-processing for 3D object reconstruction and without real-time ray-object intersection calculations at rendering time.
منابع مشابه
Fast (Spherical) Light Field Rendering with Per-Pixel Depth
Image-based rendering techniques are a powerful alternative to traditional polygon-based computer graphics. This paper presents a novel light field rendering technique which performs per-pixel depth correction of rays for high-quality reconstruction. Our technique stores combined RGB and depth values in a parabolic 2D texture for every light field sample acquired at discrete positions on a unif...
متن کاملReal time rendering and acquisition of spherical light fields
Image-based rendering techniques have proven to be a powerful alternative to traditional polygon-based computer graphics. This thesis presents a novel light field rendering technique which performs per-pixel depth correction of rays for high-quality light field reconstruction. The technique stores combined RGB and depth values in a parabolic 2D texture for every light field sample being acquire...
متن کاملDesign and Implementation of a Real-Time Video-Based Rendering System Using a Network Camera Array
We present a real-time video-based rendering system using a network camera array. Our system consists of 64 commodity network cameras that are connected to a single PC through a gigabit Ethernet. To render a high-quality novel view, our system estimates a view-dependent per-pixel depth map in real time by using a layered representation. The rendering algorithm is fully implemented on the GPU, w...
متن کاملDynamic Depth of Field on Live Video Streams: A Stereo Solution
The ability to produce dynamic Depth of Field effects in live video streams was until recently a quality unique to movie cameras. In this paper, we present a computational camera solution coupled with real-time GPU processing to produce runtime dynamic Depth of Field effects. We first construct a hybrid-resolution stereo camera with a high-res/low-res camera pair. We recover a low-res disparity...
متن کاملDynamic Depth of Field on Live Video Streams: A Stereo Solution
The ability to produce dynamic Depth of Field effects in live video streams was until recently a quality unique to movie cameras. In this paper, we present a computational camera solution coupled with real-time GPU processing to produce runtime dynamic Depth of Field effects. We first construct a hybrid-resolution stereo camera with a high-res/low-res camera pair. We recover a low-res disparity...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Comput. Graph. Forum
دوره 27 شماره
صفحات -
تاریخ انتشار 2008